top of page

Black-Litterman Portfolio Optimization in C++


Different from the Mean-Variance method I used before, the Black-Litterman method allows investors to optimize their portfolio incorporating their own view about their assets.

For the theoretical understanding of Black-Litterman, one can read their original paper, it is actually quite easy to understand:

Black, Fisher; Litterman, Robert Global Portfolio Optimization,Financial Analysts Journal; Sep/Oct 1992

For a simple implementation, however, is another worlds' thing. Just read the formula and follow my step from 1-7, we will get there!

Codes are attached below:

*I have marked the step number in the program

*I utilized the matrix calculator class I developed before (please refer to previous post!)

*This is the simplest version of BL

**************************

#include"CarlsMatrixCalculator.h" #include<fstream> #include<string> using namespace std; vector < vector < double >>readin_assets(string a){

ifstream infile; if (a == "asset") { infile.open("pdata.txt"); double x; bool mark = 1; vector<double> indatas; vector<double>::iterator inda; int num; cout << "Please input the numbers of assets in the portfolio (default is 4, changable) " << endl; cin >> num;

while (mark) { infile >> x; if (infile) { indatas.push_back(x); } else { mark = 0; if (infile.eof()) { } else cout << "Wrong file!" << endl; } }

vector<vector<double>>pricevec;

vector<double>temp0; for (int i = 0; i < indatas.size(); i++) { temp0.push_back(indatas[i]); if ((((i + 1) % (indatas.size() / num)) == 0) && i != 0) { pricevec.push_back(temp0); temp0.clear(); } }

return pricevec; } else if (a=="market") { vector<vector<double>>pricevec; infile.open("s&p500.txt"); double x; bool mark = 1; vector<double> indatas; vector<double>::iterator inda; while (mark) { infile >> x; if (infile) { indatas.push_back(x); } else { mark = 0; if (infile.eof()) { } else cout << "Wrong file!" << endl; } } pricevec.push_back(indatas); return pricevec; } else if (a=="rate") { vector<vector<double>>pricevec; infile.open("rf.txt"); double x; bool mark = 1; vector<double> indatas; vector<double>::iterator inda; while (mark) { infile >> x; if (infile) { indatas.push_back(x); } else { mark = 0; if (infile.eof()) { } else cout << "Wrong file!" << endl; } } pricevec.push_back(indatas); return pricevec; } else { vector<vector<double>>pricevec; infile.open("market_cap.txt"); double x; bool mark = 1; vector<double> indatas; vector<double>::iterator inda; while (mark) { infile >> x; if (infile) { indatas.push_back(x); } else { mark = 0; if (infile.eof()) { } else cout << "Wrong file!" << endl; } } pricevec.push_back(indatas); return pricevec; }

} vector < vector < double >>to_rates(vector < vector < double >>pricevec) { vector<vector<double>>ratevec; for (int i = 0; i < pricevec.size(); i++) { vector<double>temp; for (int j = 0; j < pricevec[0].size() - 1; j++) { temp.push_back((pricevec[i][j + 1] - pricevec[i][j]) / pricevec[i][j]); } ratevec.push_back(temp); } return ratevec;

} double average(vector < vector<double>>x){ int rows = x.size(); int columns = x[0].size(); double sum = 0; for (int i = 0; i < rows; i++) { for (int j = 0; j < columns; j++) { sum += x[i][j]; } } return sum / (rows*columns);

} int main() { cout << " --Black-Litterman Portfolio Optimizing Project--" <<endl<< endl; cout << "By Dongdi Jia & Tongda Che" << endl;

//Get datas! vector<vector<double>>pricevec=readin_assets("asset"); vector<vector<double>>ratevec = to_rates(pricevec); vector<vector<double>>marketindexvec = readin_assets("market"); vector<vector<double>>marketratevec = to_rates(marketindexvec); vector<vector<double>>riskfreeratevec = readin_assets("rate"); vector<vector<double>>marketcap = readin_assets("marketcap");

// Step #1 Calculating the investors' risk aversion A Matrix carl; vector<vector<double>>excessreturn = carl.subtraction(marketratevec, riskfreeratevec); vector<vector<double>>VarianceofMarketReturn = carl.covariance(marketratevec); double num = average(excessreturn); double den = VarianceofMarketReturn[0][0]; double A = num / den; cout << "#1# The parameter of investors' Risk Aversion A is " << A << endl; cout << "~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*" << endl;

// Step #2 Calculating the covariance matrix of assets; vector<vector<double>>S = carl.covariance(ratevec); cout << "#2# The Covariance Matrix of Portfolio Assets is " << endl; carl.show_matrix(S); cout << "~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*" << endl;

// Step #3 Calculating the market weights double sumvalue = average(marketcap)*marketcap.size()*marketcap[0].size(); marketcap=carl.scale(1 / sumvalue, marketcap); marketcap = carl.trans(marketcap); cout << "#3# The Market Weights of the Portfolio is" << endl; carl.show_matrix(marketcap); cout << "~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*" << endl;

// Step #4 Calculating Implied Equilibrium Excess Return. vector<vector<double>>PI; PI = carl.multiplication(S, marketcap); PI = carl.scale(A, PI); cout << "#4# The Implied Equilibrium Excess Return Matrix of the Portfolio assets " << endl; carl.show_matrix(PI); cout << "~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*" << endl;

// Step #5 Incorporating the views and Step #6 Link Matrix

//Here, we have two views: 1. Apple is going to out perform NOKIA by 1.5%. 2. Goldman is going to out perform GM by 2%; //Then we have the Views Matrix Q: vector<vector<double>>Q; vector<double> view1; vector<double> view2; view1.push_back(0.015); view2.push_back(0.017); Q.push_back(view1); Q.push_back(view2); vector<vector<double>>P = carl.ordinary_generator(2, 4); P[0][0] = 1; P[0][1] = -1; P[1][2] = 1; P[1][3] = -1; cout << "#5# Views upon the market: Here we get two views--1. Apple is going to out perform Nokia by 1.5%; 2. Goldman is going to out perform GM by 1.7%." << endl; cout << "*So the matrix of Views is" << endl; carl.show_matrix(Q); cout << "*The matrix of the Link Matrix is" << endl; carl.show_matrix(P); cout << "~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*" << endl;

// Step #7 Calculating the uncertainty about the views double tao = 1.0; vector<vector<double>> Omiga; Omiga = carl.multiplication(P, S); Omiga = carl.multiplication(Omiga, carl.trans(P)); 1, Omiga = carl.scale(tao, Omiga); cout << "#6# The Matrix of Uncertainty of the Views: " << endl; carl.show_matrix(Omiga); cout << "~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*" << endl;

// Step #8 Using the Formula vector<vector<double>>eme; vector<vector<double>>eme1; vector<vector<double>>eme2; eme1 = carl.inverse( carl.addition( carl.inverse ( carl.scale(tao, S)), carl.multiplication( carl.multiplication(carl.trans(P), carl.inverse(Omiga)), P) ) ); eme2 = carl.addition( carl.multiplication( carl.inverse ( carl.scale(tao, S)), PI), carl.multiplication ( carl.multiplication(carl.trans(P), carl.inverse(Omiga)), Q)); eme = carl.multiplication(eme1, eme2); cout << "#7# With the parameters above, apply the Black-Litterman Formula and acquired BL Expected Returns :" << endl; carl.show_matrix(eme); cout << "~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*" << endl;

// MVF // START! //Crucial paras; double a; double b; double c; double D; double rate = 0.01; double onenum = S.size(); vector<vector<double>> variance; vector<vector<double>> e;

// carl.show_matrix(excessreturn); variance = carl.covariance(ratevec); e = eme; cout << "Expected Return of the portfolio: " << rate << endl; vector<vector<double>> v_inverse = carl.inverse(S); cout << "~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*" << endl;

//calculate a vector<vector<double>>one_tran = carl.generator(onenum, "r"); vector<vector<double>>temp = carl.multiplication(one_tran, v_inverse); temp = carl.multiplication(temp, e); a = temp[0][0]; //carlculate B temp = carl.trans(e); temp = carl.multiplication(temp, v_inverse); temp = carl.multiplication(temp, e); b = temp[0][0]; // calculate C temp = carl.multiplication(one_tran, v_inverse); temp = carl.multiplication(temp, carl.trans(one_tran)); c = temp[0][0]; // calculate D D = b*c - a*a;

//calculating g; vector<vector<double>>temp2; temp = carl.scale(b, one_tran); temp2 = carl.scale(a, carl.trans(e)); temp = carl.subtraction(temp, temp2); temp = carl.multiplication(temp, v_inverse); temp = carl.scale(1.0 / D, temp); vector<vector<double>>g = temp;

//calculating h;

temp = carl.scale(c, carl.trans(e)); temp2 = carl.scale(a, one_tran); temp = carl.subtraction(temp, temp2); temp = carl.multiplication(temp, v_inverse); temp = carl.scale(1.0 / D, temp); vector<vector<double>>h = temp; //calculating w cout << endl; vector<vector<double>>wp; temp = carl.scale(rate, h); temp = carl.addition(g, temp); wp = temp; cout << "With the Matrix of BL Returns, we then apply the traditional optimizing method, MVF Method and finally acquired the weight of the portfolio:" << endl; carl.show_matrix(wp); cout << "~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*" << endl; cout << "~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*" << endl; cout << "~~~~~~END OF THE PROGRAM~~~~~~" << endl; return 0; }


Who Am I?

Hello, My name is Tongda (Carl). I am currently a Math Finance graudate student at BU. I am fan of innovation and funny ideas! You can reach my by  LinkedIn below :)

Follow Me
  • LinkedIn Social Icon
bottom of page